
Save System Manual
Pixel Crushers Common Library

Copyright © Pixel Crushers. All rights reserved.

Contents
Chapter 1: Introduction to the Save System..4

In This Manual...4
How to Get Help..4

Chapter 2: Save System... 5
Save System...5
Saver Components..6
Checkpoint Saves..7
Auto Save Load...8
Save System Events...8

Chapter 3: Scene Management..9
Scene Portals..9
Scene Transition Manager...10

Chapter 4: Spawned Objects..11
Chapter 5: Scripting..12

Handling Scene Build Settings Changes...13
Save System Methods...14

Chapter 6: Serializers...14

Chapter 1: Introduction to the Save System
The Pixel Crushers Common Library Save System provides a way to save and load games, and
remember scene data across scene changes.

In This Manual

The rest of this manual contains these chapters:

• Chapter 2: Save System – How to set up basic saving and loading
• Chapter 3: Scene Management – How to change scenes with persistence
• Chapter 4: Spawned Objects – How to keep track of objects created at runtime
• Chapter 5: Scripting – Scripting reference

How to Get Help

We’re here to help! If you get stuck or have any questions, please contact us any time at
support@pixelcrushers.com or visit http://pixelcrushers.com.

We do our very best to reply to all emails within 24 hours. If you haven't received a reply within 24 hours,
please check your spam folder.

Chapter 1: Introduction to the Save System 4

http://pixelcrushers.com/
mailto:support@pixelcrushers.com

Chapter 2: Save System
This chapter describes how to set up the basic Save System.

Save System

The first step is to add a Save System component to the scene. This step is actually optional. The Save
System will automatically create a Save System GameObject at runtime if one doesn’t exist. However,
you can manually add one if you want to customize it. To do so:

1. Create a GameObject, and add a Save System component. This GameObject will act as a
persistent singleton, meaning it survives scene changes and typically there is only one instance.

2. Add a Json Data Serializer component. This component converts binary saved game data into a
saveable format – in this case, JSON text. If you want to use a different serializer, you can add
your own implementation of the DataSerializer class to the Save System GameObject.

3. Add a Player Prefs Saved Game Data Storer or Disk Saved Game Storer component. This
component writes the serialized data to persistent storage such as PlayerPrefs or encrypted local
disk files. Player Prefs Saved Game Data Storer is supported on all platforms. Disk Saved Game
Storer is supported on standalone builds. If you want to store games a different way, you can add
your own implementation of the SavedGameDataStorer class.

If you have a menu system, to load and save games you can assign the methods
SaveSystem.SaveGameToSlot and SaveSystem.LoadGameFromSlot to your UI buttons’ OnClick()
events. Or in scripts you can use the equivalent static methods SaveSystem.SaveToSlot and
SaveSystem.LoadFromSlot described in the next chapter.

Similarly, to change scenes without using the Scene Portal component, you can call
SaveSystem.LoadScene in scripts or assign SaveSystem.LoadScene to your UI buttons’ OnClick()
events. Since the Save System GameObject might not be in all of your scenes, you can add a Save
System Methods component and direct OnClick() to its LoadScene method instead.

Chapter 2: Save System 5

Saver Components

Add these components to any GameObjects whose states you want to save:

Component Function

Active Saver Saves the active/inactive state of a GameObject. If the GameObject starts
inactive, add this component to a different GameObject that's guaranteed to be
active, and assign the target GameObject.

Multi Active Saver Saves the active/inactive states of multiple GameObjects.

Animator Saver Saves the state of a GameObject’s animator.

Destructible Saver Saves when a GameObject has been destroyed or disabled. The next time the
game or scene is loaded, if the GameObject has previously been
destroyed/disabled, this script will destroy/deactivate it again. It will also spawn a
replacement destroyed version if a prefab is assigned.

Enabled Saver Saves the enabled/disabled state of a component. If the GameObject starts
inactive, add this component to a different GameObject that's guaranteed to be
active, and assign the target component.

Multi Enabled Saver Saves the enabled/disabled states of multiple components.

Position Saver Saves a GameObject’s position and rotation.

Every saver component needs a unique key under which to record its data in saved games. If the Key
field is blank, it will use the GameObject name (e.g., “Orc”). If you tick Append Saver Type To Key, the
key will also use the saver’s type (e.g., “Orc_PositionSaver”). This is useful if the GameObject has several
saver components.

If GameObjects have the same name, you will need to assign unique keys. Otherwise they will all try to
record their data under the same key, overwriting each other. To automatically assign unique keys to
every saver in a scene, select menu item Tools > Pixel Crushers > Common > Save System > Assign
Unique Keys….

You can also write your own Saver components. The starter template script in Plugins / Pixel Crushers /
Common / Templates contains comments that explain how to write your own Savers.

Chapter 2: Save System 6

Checkpoint Saves

Checkpoint saves are trigger areas that automatically save the game when the player enters them. If you
want to set up a checkpoint save:

1. Create a GameObject, and add a trigger collider.
2. Add a Save System Methods component.
3. Add a Trigger Event component.

◦ Set the Task Mask to an appropriate mask, such as Player.
◦ Configure the On Trigger Enter event to call SaveSystemMethods.SaveSlot with the saved

game slot number you’d like to use.
◦ You may also want to deactivate the GameObject in On Trigger Enter so it doesn’t retrigger.

Chapter 2: Save System 7

Auto Save Load

Mobile games typically auto-save when the player closes the game and auto-load when the player
resumes the game. To add this behavior to your game, add an Auto Save Load component to the Save
System:

Tick Load On Start to load the saved game (if it exists) on start, and Save On Quit to save the game
when quitting the app.

Tick Save On Pause to also save the game when the player pauses/minimizes it. This way the game will
be saved correctly if the player pauses the app and then kills it, instead of exiting it normally in the app
itself.

Tick Save On Lose Focus to also save the game when the app loses focus.

Save System Events

The Save System Events components allows you to hook up events in the inspector.

Chapter 2: Save System 8

Chapter 3: Scene Management

Scene Portals

Scene Portals switch to another scene when the player enters them. To set up a Scene Portal:

1. Create a GameObject, and add a trigger collider.
2. Add a Scene Portal component.

Set the Required Tag, typically to Player.

Set Destination Scene Name to the scene that this portal leads to. Make sure the destination scene is in
your project’s build settings.

In the destination scene, create an empty GameObject where the player should appear. This is called a
spawnpoint. In the original scene’s Scene Portal component,set the Spawnpoint Name In Destination
Scene field to the name of that spawnpoint.

Make sure your spawnpoint is far enough away from any scene portals in the destination scene so it won’t
immediately trigger another scene change.

If you don’t want to use trigger colliders, you can manually call the ScenePortal.UsePortal method.

Chapter 3: Scene Management 9

Scene Transition Manager

To play outro and intro animations, and/or show a loading scene while loading the next actual scene, add
a Standard Scene Transition Manager to your Save System:

If Pause During Transition is ticked, make sure your Animator(s) are set to Unscaled Time.

If a Scene Transition Manager is present, the Save System will:

1. Set the Leave Scene Transition’s animator trigger (if specified).
2. Load the loading scene (if specified).
3. Asynchronously load the next actual scene.
4. After the actual scene has been loaded, set the Enter Scene Transition’s trigger (if specified).

Chapter 3: Scene Management 10

Chapter 4: Spawned Objects
This section describes how to configure dropped objects to be saved in saved games.

Dropped objects are managed by a component called Spawned Object Manager. The Spawned Object
Manager keeps track of objects that have been created in the scene at runtime. When you load a game, it
re-instantiates the objects.

This is an overview of the configuration process:

1. Add a Spawned Object component to your object prefabs.
2. Add a Spawned Object Manager to the scene, and assign the object prefabs to it.

Create Spawned Object Prefab

For this section, we use an example of tracking a sniper rifle. Find the prefab (e.g., Pickup_Sniper), and
make a copy, for example named Pickup_Sniper_Spawned. Add a Spawned Object component to it.
Repeat for all items that can be created in the scene.

Create Spawned Object Manager

Create an empty GameObject and add a Spawned Object Manager component as shown below. Each
scene should have its own Spawned Object Manager with a unique key different from other scenes.

Add all Spawned Object prefabs that can be created in the scene to the Spawned Object Prefabs list. If
a prefab is missing from the list, the Spawned Object Manager will not be able to re-spawn it when
loading games or returning to the scene. You can also create and assign Spawned Object List assets.

Chapter 4: Spawned Objects 11

Chapter 5: Scripting
The Save System has a very simple scripting interface. The asset’s online Scripting Reference contains
complete API information if you want more details.

SaveSystem class

These common properties and methods are available though SaveSystem:

public static void LoadFromSlot(int slotNumber)
Loads a previously-saved game from a slot.

public static void SaveToSlot(int slotNumber)
Saves the current game to a slot.

public static void DeleteSavedGameInSlot(int slotNumber)
Deletes the data in a saved game slot.

public static void LoadScene(string sceneNameAndSpawnpoint)
Loads a scene, optionally positioning the player at a specified spawnpoint. The parameter is a
string containing the name of the scene to load, optionally followed by "@spawnpoint" where
"spawnpoint" is the name of a GameObject in that scene. The player will be spawned at that
GameObject's position. This method implicitly calls RecordSavedGameData() before leaving the
current scene and calls ApplySavedGameData() after loading the new scene.

public static SavedGameData RecordSavedGameData()
Returns a SavedGameData object containing the saved data from the current game.

public static void ApplySavedGameData([SavedGameData savedGameData])
Applies a SavedGameData object to the current game (in the current scene). If omitted, apply the
most recently recorded data.

public static void LoadGame(SavedGameData savedGameData)
Loads a game previously saved in a SavedGameData object, including loading the saved scene.

public static void LoadScene(string sceneName, string spawnpointName = null)
Loads a scene, optionally positioning the player at a spawnpoint in the new scene.

public static void RestartGame(string startingSceneName)
Clears the current save game data and restart the game at the specified scene.

public static void ResetGameState()
Clears the current save game data without loading a new scene.

public static void LoadAdditiveScene(string sceneName)
Additively loads a scene into the current environment and tells its Savers to apply their states
from the current saved game data.

public static void UnloadAdditiveScene(string sceneName)
Unloads a previously additively-loaded scene.

public int string version
Version number to include in save files. You can use it if your data changes between releases.

Chapter 5: Scripting 12

Saver class

Saver is the base class for any components that record data for saved games. You can create subclasses
to extend the data that the Save System saves. To create a new saver subclass, copy Templates /
SaverTemplate.cs to a new filename and edit it. The comments contain detailed instructions. You can also
refer to other subclasses such as DestructibleSaver.cs and PositionSaver.cs for examples.

DataSerializer class

DataSerializer is the base class for data serializers that the Save System can use to serialize and
deserialize saved game data. The default subclass is JsonDataSerializer.

SavedGameDataStorer class

SavedGameDataStorer is the base class for data storers. A data storer writes and reads a
SavedGameData object to and from some storage location, such as PlayerPrefs or a disk file. The default
subclass is PlayerPrefsSavedGameDataStorer, but the Save System also includes
DiskSavedGameDataStorer which saves to encrypted disk files on supported platforms (e.g., desktop).

Events

You can register listeners for these C# events:

public static event SceneLoadedDelegate sceneLoaded = delegate { };
public static event System.Action saveStarted = delegate { };
public static event System.Action saveEnded = delegate { };
public static event System.Action loadStarted = delegate { };
public static event System.Action loadEnded = delegate { };

Handling Scene Build Settings Changes

If you want to validate a scene by name before loading it, assign a method to
SaveSystem.validateSceneName. Example:

SaveSystem.validateSceneName = ValidateSceneName;

...
public string ValidateSceneName(string sceneName)
{
 int index = SceneUtility.GetBuildIndexByScenePath(sceneName);
 if (index >= 0)
 {
 return sceneName; // Scene is valid.
 }
 else
 {
 return "Some Fallback Scene Name”;
 }
}

Chapter 5: Scripting 13

Save System Methods

To access Save System methods without scripting, such as in a UI Button’s OnClick() event, add a Save
System Methods component to the scene. This component exposes the methods of the SaveSystem
class to the inspector.

Chapter 6: Serializers
The default serializer is JSON Data Serializer. However, you can remove this and add a Binary Data
Serializer if you want to serialize to binary format. If your Savers use types that are not serializable, you
will need to make a subclass of Binary Data Serializer and add serialization surrogates. For examples,
see the scripts BinaryDataSerializer.cs, Vector3SerializationSurrogate.cs, and
QuaternionSerializationSurrogate.cs.

Chapter 6: Serializers 14

	Chapter 1: Introduction to the Save System
	In This Manual
	How to Get Help

	Chapter 2: Save System
	Save System
	Saver Components
	Checkpoint Saves
	Auto Save Load
	Save System Events

	Chapter 3: Scene Management
	Scene Portals
	Scene Transition Manager

	Chapter 4: Spawned Objects
	Create Spawned Object Prefab
	Create Spawned Object Manager

	Chapter 5: Scripting
	SaveSystem class
	Saver class
	DataSerializer class
	SavedGameDataStorer class
	Events
	Handling Scene Build Settings Changes
	Save System Methods

	Chapter 6: Serializers

