
Table of Contents
Table of Contents
Scripting Reference

Targeting
VelocityByA
VelocityByAngle
VelocityByTime
VelocityByHeight
AnglesBySpeed
VelocitiesBySpeed
(new in 1.1) - ElevationalReach

Prediction
PositionAtTime
Positions
(new in 1.1) - VerticalFlightTest
(new in 1.1) - FlightTest

Components (MonoBehaviour)
Trajectory Predictor
(new in 2.0) PEB Trajectory Predictor

Scripting Reference

Targeting

VelocityByA

Computes the launch velocity by the given start point, end point, and coefficient a of the quadratic

function f(x) = ax2 + bx + c which determines the trajectory of the projectile motion.

start : The starting point of the projectile motion.

end : The target point you want the projectile motion to hit or pass through.

a : The a coefficient of the quadratic function f(x) = ax2 + bx + c. It determines the shape and speed
of the trajectory, for example, -0.2f makes the trajectory curvier and slower while -0.01f makes it
straighter and faster. Should always be negative.

public static Vector3 VelocityByA(Vector3 start, Vector3 end, float a)

af://n0
af://n3
af://n5
af://n7

VelocityByAngle

Computes the launch velocity by the given start point, end point, and launch angle in degrees.

start : The starting point of the projectile motion.

end : The target point you want the projectile motion to hit or pass through.

elevationAngle : The launch angle in degrees. 0 means launch horizontally. Should be from -90f

(exclusive) to 90f (exclusive) and greater than the elevation angle formed by start to end .

VelocityByTime

Computes the launch velocity by the given start point, end point, and time in seconds the
projectile flies from start to end . The projectile object will be exactly at the end point time

seconds after launch.

start : The starting point of the projectile motion.

end : The target point you want the projectile motion to hit or pass through.

time : The time in seconds you want the projectile to fly from start to end .

VelocityByHeight

Computes the launch velocity by the given start point, end point, and max height of the projectile
motion.

start : The starting point of the projectile motion.

end : The target point you want the projectile motion to hit or pass through.

heightFromEnd : The height measured from the end point (for example, 1f means the max height
of the trajectory is 1 meter above the end point). The algorithm automatically clamps the value if it
is lower than the y value of start or end .

public static Vector3 VelocityByAngle(Vector3 start, Vector3 end, float

elevationAngle)

public static Vector3 VelocityByTime(Vector3 start, Vector3 end, float time)

public static Vector3 VelocityByHeight(Vector3 start, Vector3 end, float

heightFromEnd)

af://n14
af://n21
af://n28

AnglesBySpeed

Computes the two angle results by the given start point, end point, and launch speed. Returns
false if out of reach.

start : The starting point of the projectile motion.

end : The target point you want the projectile motion to hit or pass through.

speed : The launch speed of the projectile object.

lowAngle : The lower angle that satisfies the conditions, or 0 if the method returns false.

highAngle : The higher angle that satisfies the conditions, or 0 if the method returns false.

💡 Note

If AnglesBySpeed or VelocitiesBySpeed returns true , then there are always two effective
and different out results, this is mathematically correct. One extreme case is that when the

start and the end form exactly the maximum range that the speed can reach, the two

out results will be the same. No matter whether the return value is true or false, any value
originally supplied in out ... will be overwritten.

VelocitiesBySpeed

Computes the two velocity results by the given start point, end point, and launch speed. Returns
false if out of reach. This is an extended version of AnglesBySpeed . It is more convenient than
AnglesBySpeed when the rotation is not separated into y axis and x axis.

(For example, cannon's rotation is separated, base => y, barrel => local x, while an archer using a
bow the rotation can be Slerp(...) directly between two directions.)

start : The starting point of the projectile motion.

end : The target point you want the projectile motion to hit or pass through.

speed : The launch speed of the projectile object.

lowAngleV : The lower-angle velocity that satisfies the conditions, or (0, 0, 0) if the method returns
false.

highAngleV The higher-angle velocity that satisfies the conditions, or (0, 0, 0) if the method
returns false.

public static bool AnglesBySpeed(Vector3 start, Vector3 end, float speed, out

float lowAngle, out float highAngle)

public static bool VelocitiesBySpeed(Vector3 start, Vector3 end, float speed, out

Vector3 lowAngleV, out Vector3 highAngleV)

af://n35
af://n48

(new in 1.1) - ElevationalReach

Overload 1

Computes how far a projectile that uses the given speed at start can reach at the given

elevation endElevation . Returns -1f if can't reach the elevation.

start : The starting point of the projectile motion.

endElevation : The elevation (y) of the target point you want the projectile motion to hit or pass

through.

speed : The launch speed of the projectile object.

Overload 2

Computes how far a projectile that uses the given speed at start can reach at the given

elevation endElevation , and outputs the corresponding launch angle. Returns -1f if can't reach

the elevation.

start : The starting point of the projectile motion.

endElevation : The elevation (y) of the target point you want the projectile motion to hit or pass

through.

speed : The launch speed of the projectile object.

angle : The angle that satisfies the conditions.

Prediction

PositionAtTime

Computes the position of the projectile at the given time counted from the moment the projectile
is at origin .

origin : Launch position, or the position of the projectile at a certain time (usually current).

originVelocity : The velocity of the projectile when it is at origin .

time : The time counted from the moment the projectile is at origin .

public static float ElevationalReach(Vector3 start, float endElevation, float

speed)

public static float ElevationalReach(Vector3 start, float endElevation, float

speed, out float angle)

public static Vector3 PositionAtTime(Vector3 origin, Vector3 originVelocity,

float time, float gAcceleration)

af://n58
af://n74
af://n76

gAcceleration : Gravitational acceleration, equals the magnitude of gravity (normally equals

Physics.gravity.y).

Positions

Computes the trajectory points of the projectile and stores them into the buffer.

origin : Launch position, or the position of the projectile at a certain time (usually current).

originVelocity : The velocity of the projectile when it is at origin .

distance : To calculate the positions to how far, from origin and ignoring height.

count : How many positions to calculate, including the origin and end.

gAcceleration : Gravitational acceleration, equals the magnitude of gravity (normally equals

Physics.gravity.y).

positions : The buffer to store the calculated positions.

(new in 1.1) - VerticalFlightTest

Tests if a projectile at start can use the vertical velocity (y) of startVelocity to hit the elevation
(y) of end , if true, outputs the time of flight based on the vertical speed. Horizontal speed is

ignored.

start : The starting point of the projectile motion.

end : The target point you want the projectile motion to hit or pass through.

startVelocity : The velocity at the start point, or launch velocity.

timesOfFlight : The time results that a projectile fly from start to end with the launch velocity

startVelocity .

(new in 1.1) - FlightTest

Tests if a projectile at start can use startVelocity to hit end , and outputs the time of flight.

start : The starting point of the projectile motion.

public static void Positions(Vector3 origin, Vector3 originVelocity, float

distance, int count, float gAcceleration, Vector3[] positions)

public static bool VerticalFlightTest(Vector3 start, Vector3 end, Vector3

startVelocity, out Vector2 timesOfFlight)

public static bool FlightTest(Vector3 start, Vector3 end, Vector3 startVelocity,

FlightTestMode testMode, out float timeOfFlight)

af://n84
af://n94
af://n102

end : The target point you want the projectile motion to hit or pass through.

startVelocity : The velocity at the start point, or launch velocity.

testMode : FlightTestMode (Enum).

timeOfFlight : The time that a projectile fly from start to end with the launch velocity

startVelocity .

💡 What's the Difference between FlightTest and VerticalFlightTest ?

VerticalFlightTest focuses on the vertical value y of the velocity and end point, x and z

values are ignored. It is good for when: 1) you don't know the x and z values of the end point,
or 2) the start and end points are very close, or equal, on the xz-plane, which will cause
computer precision issues using the horizontal-based one (FlightTestMode.Horizontal).

FlightTest is a superset of VerticalFlightTest , when you set the testMode to
FlightTestMode.VerticalA or FlightTestMode.VerticalB , it invokes

VerticalFlightTest .

Components (MonoBehaviour)

Trajectory Predictor

This is a component that let you easily predict and render trajectories, it wraps Positions(...)

and has trajectory rendering implemented. See Manual > How to use > Trajectory prediction for the
concrete usage.

(new in 2.0) PEB Trajectory Predictor

PEB Trajectory Predictor has dedicated documentation page: Link

Projectile Toolkit 2.0

af://n116
af://n118
af://n124
https://blobcreate.github.io/projectile-toolkit/docs/PEB%20Trajectory%20Predictor.html

	Table of Contents
	Scripting Reference
	Targeting
	VelocityByA
	VelocityByAngle
	VelocityByTime
	VelocityByHeight
	AnglesBySpeed
	VelocitiesBySpeed
	(new in 1.1) - ElevationalReach

	Prediction
	PositionAtTime
	Positions
	(new in 1.1) - VerticalFlightTest
	(new in 1.1) - FlightTest

	Components (MonoBehaviour)
	Trajectory Predictor
	(new in 2.0) PEB Trajectory Predictor

