
Method Example use case

VelocityByA

This method automatically adapts max height of the trajectory
according to the distance to the target. Great for human-like
throwing/jumping behavior, and projectile launch calculation in 3D top-
down shooters.

VelocityByAngle Launch projectiles to hit a target with a specific elevation angle.

VelocityByTime Let archers to accurately hit moving targets.

VelocityByHeight
Use in animations, or achieve realistic Off-Mesh Link / NavMesh Link
movement, or achieve jump pad mechanism.

AnglesBySpeed
Simulate weapons that has a specific launch speed, such as cannon
and mortar.

VelocitiesBySpeed
An extended version of AnglesBySpeed. It is more convenient than
AnglesBySpeed when the rotation is not separated into y axis and x
axis, such as hand-held mortar and bow.

(new in 1.1)
ElevationalReach

Display the maximum distance a weapon can attack.

Table of Contents
Table of Contents
API example use cases

Targeting
Prediction

How to use
Targeting
Trajectory prediction

Explore the demos
Online
In editor
Relation

(new in 2.0) PEB Trajectory Predictor

API example use cases

Targeting

Projectile Toolkit provides various targeting algorithms to meet the needs of different scenarios,
here are some example use cases:

af://n0
af://n3
af://n5

Method Example use case

PositionAtTime
Implement anti-ballistic missile (use this method to predict the position
of the hostile projectile after x seconds, and use VelocityByTime(..., x) to
launch the anti-ballistic missile).

Positions
Predict the trajectory of a projectile. (You can use Trajectory Predictor
component instead, it has trajectory rendering implemented.)

(new in 1.1)
VerticalFlightTest

Predict the flight time of a projectile when the x and z coordinates of the
target are unkown, but the elevation of the target is known.

(new in 1.1)
FlightTest

Test if a certain velocity will allow a projectile to hit the target.

Prediction

How to use

💡 Note

using Blobcreate.ProjectileToolkit; in your scripts to be able to call the APIs.

Trajectory line materials are Built-in RP materials. If you are using SRP, see Explore the
demos > In editor to see how to convert.

Targeting

To launch a projectile to hit a target:

1. Add a Collider and a Rigidbody to your prefab if it doesn't have one (you can set Interpolate
to Interpolate and set Collision Detection to Continuous Dynamic to get the best result),

2. In your code, instantiate the prefab,

3. Call one of the targeting algorithms to calculate the launch velocity, and apply it using
AddForce(...) .

The targeting algorithms are all static methods so the integration is very flexible.

Example code

Take VelocityByTime(...) for example, if you want AI units to accurately striking moving

objects:

af://n33
af://n51
af://n61

View Defender.cs for the whole implementation of this (how to calculate predictedPos , etc.).

Additionally, you can add a Simple Explosive component to your prefab, it handles collision
events, explosion VFX, explosion force, and damage. Add the following logic below the above lines
to make it work properly (in the above example, targetPosition is predictedPos):

For 2D

In 2D, everything is the same, except that Rigidbody2D does not have
ForceMode2D.VelocityChange mode, so we use ForceMode2D.Impulse instead:

Trajectory prediction

To predict and render the trajectory of a projectile:

1. Drag and drop the prefab "Trajectory Predictor.prefab" in folder "Blobcreate/Projectile
Toolkit/Prefabs" into your scene,

2. In your script, add the following logic:

Or if you want to predict the trajectory of a moving rigidbody:

Explore the demos

[SerializeField] Rigidbody projectilePrefab;

[SerializeField] Transform launchPoint;

[SerializeField] float timeOfFlight;

...

// In your own method:

var myRigid = Instantiate(projectilePrefab, launchPoint, launchPoint.rotation);

var v = Projectile.VelocityByTime(myRigid.position, predictedPos, timeOfFlight);

myRigid.AddForce(v, ForceMode.VelocityChange);

myRigid.GetComponent<ProjectileBehaviour>().Launch(targetPosition);

myRigid2D.AddForce(v * myRigid2D.mass, ForceMode2D.Impulse);

[SerializeField] TrajectoryPredictor tp;

...

// Update() or your own method

void Update()

{

 // Call Render to update the positions of the line.

 tp.Render(launchPosition, launchVelocity, distanceOrEnd);

}

tp.Render(myRigid.transform.position, myRigid.velocity, distanceOrEnd);

af://n81
af://n92

Online

Click here to play the online version (WebGL).

In editor

You can explore the demos under the folder "Blobcreate/Projectile Toolkit/Demos".

Some setup is required:

1. Upgrade materials

The materials are Built-in Render Pipeline materials. If you are using Scriptable Render Pipeline,
you can convert the materials easily:

URP, for newer versions: URP 12.0+, for older versions: URP

(Optional): import native URP unlit materials from "Blobcreate/Projectile
Toolkit/Materials/URP Unlit Materials.unitypackage". Double click on it and import, the
corresponding materials will be overriden and updated.

HDRP, for newer versions: HDRP 12.0+, for older versions: HDRP

In your custom RP, manually replace these materials with the equivalent shaders in your RP.

⚠ Important

After upgrading the materials, if you encounter that the trajectory is not showing, search the
following materials in the Project panel and click on them one by one, and the problem
should be fixed: "Dash Line", "Slash Line", "SquareParticle". (This is a Unity Editor bug.)

2. Visual setup (optional):

Post-processing: you can create a post-processing volume and assign your profile to it. A profile
called "URPPostProcessing" is provided for use in URP.

If your project uses URP but there are rendering problems with demo scenes you can use "PTK-
URP-HighQuality" render pipeline asset.

3. Set up layers and physics

(These settings are for the demo scenes, they are not required for your own scenes/projects.)

Back up your layer settings and physics settings, and apply the layer preset "PTKLayers" and
physics preset "PTKPhysics" under ".../Demos/Other Assets/Settings". Detailed steps:

1. (At the top right of Unity editor) select "Layers > Edit Layers...",

2. Click the second icon in the top right of the inspector,

3. Click "Save current to..." button to save your current layer settings,

4. Click that second icon again and then choose "PTKLayers" in the pop up window.

Setting up the physics is similar, select "Edit > Project Settings...", select "Physics", click the second
icon in the top right, back up your current settings, and apply "PTKPhysics" preset.

af://n94
https://blobcreate.itch.io/demos-for-projectile-toolkit
af://n97
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.1/manual/features/rp-converter.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@7.7/manual/upgrading-your-shaders.html#:~:text=custom%20shaders.-,To%20convert,-the%20built%2Din
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@12.1/manual/Upgrading-To-HDRP.html#upgrading-materials
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@7.7/manual/Upgrading-To-HDRP.html#upgrading-materials

Method Scene Index(es) / class(es)

VelocityByA 02 / JumpAttacker ProjectileLauncher

VelocityByAngle 03 / CannonLike

VelocityByTime 02 / Defender

VelocityByHeight 00 / JumpTester , 01 / NMJump , 02 / JumpAttacker

AnglesBySpeed 03 / CannonLike

VelocitiesBySpeed 03 / CannonLike

PositionAtTime Demo coming soon...

Positions Used in Trajectory Predictor component.

ElevationalReach 03 / CannonLike

VerticalFlightTest Used in FlightTest(...) method.

FlightTest 03 / CannonLike

💡 Note

If you want to go back to the physics and layer settings of your project, simply apply the
settings you've backed up.

Relation

Which scene demonstrates which algorithm? The relation is shown in the table below:

For Trajectory Predictor component, the demo scene is 02.

💡 Note

The script filenames of the classes are class + .cs . You can find them under the folder

"Blobcreate/Projectile Toolkit/Demos/Scripts".

(new in 2.0) PEB Trajectory Predictor
PEB Trajectory Predictor has dedicated documentation page: Link

Projectile Toolkit 2.0

af://n137
af://n182
https://blobcreate.github.io/projectile-toolkit/docs/PEB%20Trajectory%20Predictor.html

	Table of Contents
	API example use cases
	Targeting
	Prediction

	How to use
	Targeting
	Trajectory prediction

	Explore the demos
	Online
	In editor
	Relation

	(new in 2.0) PEB Trajectory Predictor

