Behavior Designer - Tactical Pack



Table of Contents

Behavior Designer - Tactical Pack ...............cccooiiii
INEEIFACES oo e a e



Behavior Designer - Tactical Pack

The Behavior Designer - Tactical Pack includes 13 tasks focused on tactical situations. The
default set of Tactical Pack tasks use Unity’s navigation mesh to traverse the world. The
Tactical Pack doesn’t do the actual movement - it instead sets the destination for the
underlying pathfinding implementation (Unity’s NavMesh, A* Pathfinding Project, etc).

Integrations

You can download the Tactical Pack integrations from this page. After you have imported an
integration you can start to use the integration tasks by adding them to your behavior tree.
For example, if you want to use the A* Pathfinding Project version of the attack task you
would add the task located under Actions -> Tactical -> A* Pathfinding Project -> Attack.

Playmaker

The Tactical Pack tasks can use Playmaker to attack and receive damage. To have an agent
attack using Playmaker, add the AttackBridge component to your agent. This component
allows you to specify which Playmaker event should be triggered when an attack should
take place. Optionally a Vector3 may also be specified which indicates the direction that the
agent should attack.

Receiving damage with Playmaker is similar to attacking. Add the DamagableBridge
component to any GameObject that can receive damage, and the Damage Event will be
triggered when the GameObject should take damage. The Damage Amount and Health
Variable Names are required. These variables map to a Playmaker variable which specify
how much damage was received and the total health that the GameObject has left.


https://docs.unity3d.com/Manual/nav-BuildingNavMesh.html
https://www.assetstore.unity3d.com/en/#!/content/368?aid=1100lGdc

Interfaces

One of the initial design decisions that we had to make with the Tactical Pack was to define
what it means to attack and take damage. Attacking and taking damage means different
things to different games. For example, attack could mean to shoot a gun or throw a melee
punch. Our goal with the Tactical Pack is to make the code as generic as possible. To solve
this we added two interfaces, [AttackAgent and IDamagable. This allows you to define
exactly what it means to attack or take damage for your game while still being able to use
the Tactical Pack.

Included with the demo scene is one implementation of [AttackAgent and IDamagable.
When the agent attacks they will instantiate a bullet prefab and that bullet will travel in the
direction of the target. When the bullet hits the target it will call the IDamagable
implementation to do the actual damage. It is expected that you will implement your own
[AttackAgent and IDamagable components that fit your game. By structuring the Tactical
Pack this way it succeeds in having a generic pack that works with any type of game.

The following methods need to be implemented with IAttackAgent:

// Returns the furthest distance that the agent is able to attack
from.
float AttackDistance();

// Can the agent attack?
bool CanAttack();

// Returns the maximum angle that the agent can attack from.
float AttackAngle();

// Does the actual attack.
void Attack(Vector3 targetPosition);

The following methods need to be implemented with IDamagable:

// Take damage by the specified amount.
void Damage(float amout);

// Is the object currently alive?
bool IsAlive();



	Behavior Designer - Tactical Pack
	Interfaces

